
A Guide on Inspections and Other Review
Techniques

Karol Frühauf
Peer Reviews in Software: A Practical Guide
by Karl E. Wiegers, Addison-Wesley Professional, 2002, 256 pp., ISBN 0-201-73485-0, US$39.99

I was eager to read Peer Reviews in Software for three reasons: first, to see if it confirmed my experience;
second, to learn something new; and third, to steal ideas for better presentation of the topic in my teaching.
But judging the book on the basis of my expectations would be unfair. It deserves to be measured against
Karl Wiegers’ goal. In his own words, “the principal goal of this book is to help you effectively perform
appropriate reviews of deliverables that people in your organization create.” It’s primarily intended for
people who want to participate in reviews and people who should encourage reviews in their organizations.

The book completely satisfies the expectations it creates. It is well organized, sticks to the topic, and
provides all the information the reader needs, all in easy-to-understand language. The book isn’t only about
software quality, it’s also a piece of quality work.

It’s not surprising, then, that Chapter 1 contains, besides justification of reviews, the section “A Personal
Commitment to Quality.” This contains a quote that should be every software-producing organization’s
motto: “If you don’t have time to do it right, when will you have time to do it over?” Wiegers introduces
peer review as the general term covering any technique that people use to examine software development
work products to find defects. Reviews, inspections, and walkthroughs are examples of specific peer review
techniques. I like “peer review” better than the term “static testing,” which people often use to distinguish
reviews from “dynamic testing,” which involves actually executing programs to detect defects.

In Chapter 2, Wiegers discusses the cultural prerequisites for peer reviews in an organization and how
reviews benefit the different roles in a development effort. He points out clearly why it’s a mistake to
consider a review a milestone and not a task before a milestone; let’s hope many managers eventually grasp
this idea. The “Peer Review Sophistication Scale” section lays the groundwork for Chapter 3, which
introduces different techniques in order of formality. Inspections represent the most formal end of the
spectrum, followed by team review, walkthrough, pair programming (including agile programming), peer
deskcheck, passaround, and ad hoc review. This chapter concludes with suggestions for selecting the
appropriate technique depending on the situation.

Chapter 4 presents an overview of the inspection process. Chapters 5–9 provide all the necessary
material for training on that process, starting with planning, via preparation and meeting, to closure, and
eventually to inspection data analysis. These chapters also describe the tasks of the different roles in the
particular stages of the process, as well as the results of these tasks. The presentation is clear and thorough
enough for novices to learn the process and contribute to its success. (An inspection moderator would need
additional formal training. This is always the case, because only born moderators can learn to moderate by
reading a book.) Of course, trainers will still need to prepare exercises, but such exercises will likely be
more effective than book-based exercises because they’ll use material from real projects in the company.

The next two chapters help establish peer reviews in an organization. Chapter 10 is about the
organizational matters involved in installing a peer review program and setting up a review process.
Chapter 11 highlights the critical success factors for such a program and provides hints on how to avoid the
usual traps that people encounter when installing reviews.

The final chapter, “Special Review Challenges,” covers conditions that make the inspection process
more difficult, such as large work products, geographical or time separation, generated and nonprocedural
code, too many participants, and lack of qualified reviewers. This chapter provides clear evidence that
Wiegers has dealt personally with the review process and knows how to solve real-life problems
concerning reviews.

Appendix A explains the role of reviews in Capability Maturity Models and in ISO 9000-3, which helps
to relate their requirements to the book’s material. Appendix B contains supplemental material.

Objectively measured, the book is a win for the intended readers. Software engineers should read the

whole book to understand all facets of reviews. Managers hoping to learn something about reviews could
skip Chapters 5–9 and still find enough solid material to make the right decisions regarding whether and
how to install reviews. I can’t imagine that any manager would decide not to implement reviews after
reading this book, so the main task is to get it into managers’ hands.

Now for my subjective measurement. First, the book confirms my experience very much indeed, except
on one point. It’s not always the program’s author who decides which defects—if not all—to remove. For
example, after a review of software design document, the project manager usually needs to decide this on
the basis of the actual situation’s risks. Second, I did learn some tricks in applying inspections. Third, I
won’t use the author’s forms (my own forms seem less clumsy because I’m used to them), but I will steal
some checklist entries and some criteria for my catalog of criteria for selecting review techniques. Overall,
the book was a win for me.

Even in these agile times, reviews have their value. I don’t mean pair programming, which is a rather
extreme peer review technique; I mean inspections or other techniques that are a bit less rigorous. I would
go so far as to claim that only organizations with mature review processes in place can successfully
introduce agile methods. Agile methods rely on face-to-face communication and common ownership of the
software. Applying reviews is the first step in this direction.

Reviews pull developers out from their dark corners so they have to put their work products into the
public light and under the scrutiny of their peers, and have to learn to listen to an appraisal of their work
without blaming. Additionally, review programs have a positive side effect: team members’ values
converge, and a consensus grows about what is and isn’t good for achieving the common goal. Without
these prerequisites, agile methods are unlikely to prosper. Peer Reviews in Software is a good roadmap for
creating these prerequisites and for harvesting cost benefits along the way.

Karol Frühauf is a consultant and chairman of INFOGEM AG. Contact him at karol.fruehauf@infogem.ch.

